

NASA Town Hall Meeting

2012 Small Satellite Conference Utah State University

August 13, 2012

Goals for NASA Small Spacecraft Technology Program

- Advance the capabilities of small spacecraft to support NASA missions in science, exploration and space operations
 - Develop the unique capacities of small spacecraft to perform missions or examine phenomena not possible otherwise
 - Unleash NASA's unique capabilities and assets into the already vibrant small spacecraft community
- Foster the growth of the "small spacecraft philosophy" across broader NASA and space industry activities
 - rapid, agile and aggressive technology development
 - smaller scale, lower cost and shorter schedules
 - higher risk tolerance with higher potential payoff
 - faster transition from laboratory to flight demonstration
 - stronger workforce with early and frequent flight project experience
 - introduce components and techniques from non-traditional sources

Organization

Organization

Technology Research and Development

Maturing technologies from TRL ~ 3 to 5

Flight Demonstrations

• Maturing technologies & mission capabilities from TRL ~5 to 7+

Program Executive: Andrew Petro (NASA Headquarters)

Andrew.J.Petro@nasa.gov

Program Office at NASA Ames Research Center

Program Manager: Bruce Yost

Bruce.D.Yost@nasa.gov

Current Activities

- PhoneSat 1.0 & 2.0 NASA ARC
- Edison Demonstration of Smallsat Networks (EDSN)
 NASA ARC with MSFC
- New Projects
 - •Integrated Solar Array and Reflectarray Richard Hodges - JPL
 - •Optical Communications and Proximity Sensors Siegfried Janson – Aerospace Corp
 - •Proximity Operations Demonstration Charles MacGillivray – Tyvak
- Investment Strategy Development
- New Solicitations and Projects
 Technology Developments and Flight Demonstrations
- Other Initiatives

PhoneSat 1.0/2.0b Mission

Two PhoneSat-1.0 units to demonstrate use of Nexus S smart phone the flight avionics for a small satellite (1-U CubeSat)

One PhoneSat-2.0 unit to demonstrate Nexus S smartphone as the flight avionics, a low cost reaction wheel-based attitude control system, and solar cell power.

All 3 spacecraft have corner reflectors to assess laser comm potential for cubesats.

Launch: Orbital Science Antares – October 2012
 Wallops Island, VA

•Orbit: 250km circular, 51 deg inclination

•Mass: 1.2 kg

•Size: 10cm x 10cm x 10cm

Edison Demonstration of SmallSat Networks (EDSN)

Flight Demonstration Description:

Flight demonstration of a swarm of 10, 1.5 U CubeSats simultaneously deployed into a loose swarm in LEO. Will host competitively-procured scientific instruments to demonstrate distributed, multipoint space weather measurements.

Objectives:

- Determine the utility of large swarms or constellations of small spacecraft
- Lower the unit cost and shorten the schedule of future small spacecraft
- Enable the creation of new scientific, commercial, academic, or government spacecraft applications

Project Start: Nov 2011

Project Completion: Nov 2013

Process

- 1. Assess and define the current state-of-the-art
- 2. Generate desired mission capabilities (be visionary)
- 3. Prioritize desired capabilities and the timeframe for realization
- 4. Derive technology development needs to support desired capabilities

Concepts

Classes of potential missions or capabilities to focus and drive investment strategy

- "Space Weather Network" coordinated constellation of spacecraft providing distributed scientific measurements – representative of whole class of science missions
- "Made in Orbit" spacecraft assembled from parts by crews on ISS (satellites, small space vehicles, re-entry vehicles)
- "NEO Explorer" network of microprobes that can operate on or around an asteroid
- "Debris Remover" spacecraft that can de-orbit or shorten orbital lifetime of inoperative satellites or debris
- "Upper Atmosphere Swarm" coordinated group of spacecraft that can intensely probe a volume of the upper atmosphere
- "Satellite Inspector" or "EVA Assistant" spacecraft that can maneuver around another spacecraft (in particular ISS) to inspect and/or repair or to assist an EVA astronaut or robot. A similar concept for IVA
- "Mini X-Plane" miniature test vehicle, "dropped" from orbit for hypersonic or other entry and landing research

Concepts – CONTINUED

- "Mini Return Capsule" spacecraft that can de-orbit and return sensitive payloads from ISS or from other satellites or space vehicles
- "Super A-Train" a constellation of 100 or more Earth Science satellites providing continuous global data
- "Planetary Omnibus" large planetary spacecraft composed of a simple bus and a large collection of standardized, small independent spacecraft which are released at the destination
- "Self-Assembling Satellite" satellite assembled in orbit from components that are themselves self-sufficient smallsats
- "NEO Beacon" a super-long-life, rad-insensitive beacon to be deployed on NEOs and comets or other spacecraft (in that case a spacecraft "black box")
- "Solar System Internet" not a spacecraft but a system for flexible communications links from spacecraft to the internet
- Micro-landers and Micro-rovers

Others?

Prioritization

Technology Stretch

Reaching for technology capabilities - that are enabling for small spacecraft or initially possible with small spacecraft - and might offer more general technology advancement or unanticipated science capabilities

Examples:

- •Propulsion systems that minimize or eliminate toxic, corrosive, radioactive, cryogenic, explosive, or high-pressure systems or materials
- •Power generation and storage systems significantly beyond the capabilities of the best batteries and PV arrays (while also minimizing hazards mentioned above)
- •Radiation-tolerant systems an alternative to rad-hard electronics
- •Ultra-lightweight spacecraft that can be built in space with materials and structural designs that could not withstand launch or even 1g
- •Innovative shielding for example, a smallsat suspended within an outer shell with no physical attachment what science might that enable?
- •Spacecraft that dissolve, or dispose of themselves in other ways, when their mission is over.

Others?

Please visit:

www.nasa.gov/smallsats

and Booth 28

